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Abstract
A previously introduced scheme for describing integrable deformations of
algebraic curves is completed. Lenard relations are used to characterize and
classify these deformations in terms of hydrodynamic-type systems. A general
solution of the compatibility conditions for consistent deformations is given
and expressions for the solutions of the corresponding Lenard relations are
provided.

PACS number: 02.30.Ik

1. Introduction

Algebraic curves find important applications in the theory of integrable systems [1–3]. They
are particularly relevant [4–7] in the study of the zero-dispersion limit of integrable systems
and the analysis of Whitham equations. In [6, 7] Krichever formulated a general method to
characterize dispersionless integrable systems underlying the deformations of algebraic curves
in the Whitham averaging method. A different scheme to determine integrable deformations
of algebraic curves C of the form

F(p, k) := pN −
N∑

n=1

un(k)pN−n = 0 (1)

was introduced in [8–11]. Here the coefficients (potentials) are assumed to be general
polynomials in k. Our previous work focused on curves of degrees N = 2 and 3, and
the aim of the present paper is to complete the analysis by considering the general case of
algebraic curves of arbitrary degree N.
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The method proposed in [8–11] applies for finding deformations C(x, t) of (1) such that
the branches of the multiple-valued function p(k) = (p1(k), . . . , pN(k))T determined by (1)
obey an equation of the form

∂tpi = ∂x

(
N∑

r=1

ar(k, u(k))pN−r
i

)
, ar ∈ C[k], (2)

where ar are functions of k and u(k) = (u1(k), . . . , uN(k)). As a consequence of (2) the
potentials u(k) satisfy an evolution equation of hydrodynamic type and the problem is to
determine expressions for ar such that (2) is consistent with the polynomial dependence
of u on the variable k. That is to say, if (d1, . . . , dN) are the degrees of the polynomials
(u1(k), . . . , uN(k)), then degree(∂tun) � dn must be satisfied for all n. At this point a Lenard
relation allows us to formulate a sufficient condition for the consistency of (2) in terms of
a system of inequalities involving the degrees dn only. Thus we are led to the problem of
determining the degrees satisfying the consistency condition (consistent degrees) for each N.
In [9] it was found that for N = 2 the consistent degrees (d1, d2) are characterized by the
inequality d1 � d2 + 1 . For N = 3 there is only a finite set of consistent degrees given by
[11]:

(0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 1, 2) (1, 0, 0) (1, 0, 1)

(1, 1, 0) (1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 2, 2) (1, 2, 3).
(3)

In the present work, we complete these results. Thus, it is first shown that for N = 4 the set
of consistent degrees is

(0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 1) (0, 1, 0, 0)

(0, 1, 0, 1) (0, 1, 1, 0) (0, 1, 1, 1) (0, 1, 1, 2),
(4)

and then it is proved that for N � 5 the consistent degrees (d1, . . . , dN) are given by

di = 0, i = 1, 2, . . . , N − 3, dN−2, dN−1, dN � 1. (5)

We note the fact that no compatible degrees di � 2 arise for N � 5. This implies that
for N � 5 the algebraic curves satisfying the consistency conditions have zero genus since
they are obviously rational ones. In contrast for N = 4 and N = 2, 3 (see also [8–11]) the
cases involving consistent degrees equal or higher than 2 (equal or higher than 3 for N = 2 )
generically correspond to algebraic curves with non-zero genus. Hence, the degree N = 5
represents a threshold for a change in the properties of algebraic curves. This feature is
reminiscent of the statement of the classical Abel theorem [12].

By substituting the branches pi by their Laurent series in k into (2), infinite series of
conservation laws follow. It means that the deformations of (1) supplied by our method are
integrable. In fact, the corresponding hydrodynamic systems satisfied by the potentials un(k)

represent the quasiclassical (dispersionless) limits of the standard integrable models arising
from the compatibility between generalized (energy-dependent) spectral problems(

∂N
x −

N∑
n=1

un(k, x)∂N−n
x

)
ψ = 0, (6)

and equations of the form

∂tψ =
(

N∑
r=1

ar(k, x, t)∂N−r
x

)
ψ. (7)

The work is organized as follows. We first outline our method in section 2. Then section 3
is devoted to determine and classify the curves (1) which admit deformations consistent with
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the degrees of their potentials. Finally, in section 4 we characterize the hydrodynamic-type
systems which govern these deformations.

2. Deformations of algebraic curves

In order to write equation (2) in terms of the potentials un we introduce the power sums

Ps = 1

s

(
ps

1 + · · · + ps
N

)
, s � 1. (8)

One can relate potentials and power sums through Newton recurrence formulae, the solution
of which is given by Waring’s formula [13]

Ps =
(s)∑

1�i�s

1

i
(u1 + · · · + uN)i, (9)

where the superscript (s) in the summation symbol indicates that only the terms of weight s
are retained, with the weights being defined as

weight
[
u

α1
1 u

α2
2 · · · uαN

N

]
:=

N∑
j=1

jαj . (10)

Using these variables, equation (2) can be rewritten as [10, 11]

∂tu = J0a, (11)

where

J0 = T T V T ∂x · V, u = (u1, u2, . . . uN)T , a = (aN, aN−1, . . . , a1)
T ,

T :=




1 −u1 · · · −uN−1

0 1 · · · −uN−2

...
...

...

0 0 · · · 1


 V :=




1 p1 · · · pN−1
1

1 p2 · · · pN−1
2

...
...

...

1 pN · · · pN−1
N


 .

The elements of J0 can be easily written in terms of the power sums as

(J0)11 = N∂x,

(J0)i1 = (i − 1)Pi−1∂x −
i−1∑
l=2

ui−lPl−1∂x − Nui−1∂x, if i �= 1,

(J0)ij = (i + j − 2)Pi+j−2∂x + (j − 1)Pi+j−2,x

−
i−1∑
k=1

ui−k[(k + j − 2)Pk+j−2∂x + (j − 1)Pk+j−2,x], if j �= 1.

(12)

The problem now is to determine expressions for a (in (11)) depending on k and u, such that
the flow (11) is consistent with the polynomial dependence of u on the variable k. That is to
say, if dn := degree(un) are the degrees of the coefficients un as polynomials in k, then

degree(J0a)n � dn, n = 1, . . . N,

must be satisfied. The strategy [9–11] for finding consistent deformations is to solve Lenard-
type relations

J0r = 0, r := (r1, . . . , rN)�, ri ∈ C((k)), (13)
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and take a := r+, where (·)+ and (·)− indicate the parts of non-negative and negative powers
in k, respectively. Now from the identity

J0a = J0r+ = −J0r−,

it is clear that a sufficient condition for the consistency of (11) is that

max
m=1,...,N

{degree(J0)nm} � dn + 1, n = 1, . . . , N. (14)

This condition for consistency only depends on the curve (1) and does not refer to the particular
solution of the Lenard relation

In the subsequent discussion we will use an important result concerning the branches
pi(k): let C((λ)) denote the field of Laurent series in λ with at most a finite number of terms
with positive powers, then we have [14, 15]:

Newton Theorem. There exists a positive integer l such that the N branches

pj (z) := (pj (k))|k=zl (15)

are elements of C((z)). Furthermore, if F(p, k) is irreducible as a polynomial over the field
C((k)) then l0 = N is the least permissible l and the branches pj (z) can be labelled so that

pj (z) = pN(εj z), ε := exp

(
2πı

N

)
.

Notation convention. Henceforth, given an algebraic curve C we will denote by z the
variable associated with the least positive integer l0 for which the substitution k = zl0 implies
pj ∈ C((z)),∀j . We refer to l0 as the Newton exponent of C.

It was proved in [10, 11] that the solution of the Lenard relation J0r = 0 is given by

r = T ∇uR, R =
N∑

i=1

gi(z)pi, ∇uR =
(

∂R

∂u1
, . . . ,

∂R

∂uN

)T

, (16)

with gi ∈ C((z)). The problem of choosing the functions gi such that R ∈ C((k)) (and
consequently r ∈ C((k))) was solved in [11] by introducing the element σ0 of the Galois
group of the curve

σ0(pj )(z) := pj (ε0z), ε0 := exp

(
2πı

l0

)
. (17)

Thus it is clear that the requirement of R ∈ C((k)) is equivalent to the invariance of R under
σ0, i.e.

R(ε0z, σ0p) = R(z,p). (18)

The scheme now consists in using the Lagrange resolvents [12]

Li :=
N∑

j=1

(εi)jpj , i = 1, 2, . . . , N, (19)

to construct functions R satisfying (18) and such that R ∈ C((k)).
The case N = 3 was completely solved in [11]. There arise twelve possible choices (3)

which are classified in terms of σ0 and l0 according to table 1 and the invariant functions R
in (16) are given by

l0 = 3, R = zf1(z
3)L1 + z2f2(z

3)L2 + f3(z
3)L3,

l0 = 2, R = f1(z
2)(L1 + L2) + zf2(z

2)(L1 − L2) + f3(z
2)L3

l0 = 1, R = f1(z)L1 + f2(z)L2 + f3(z)L3,

(20)

with f1, f2 and f3 being arbitrary analytic functions of k.
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Table 1. Classification of (3) according to σ0 and l0.

σ0 l0 (d1, d2, d3)(p1 p2 p3

p2 p3 p1

)
3 (0, 0, 1) (0, 1, 2)

(p1 p2 p3

p2 p1 p3

)
2

(0, 1, 0) (0, 1, 1)

(1, 0, 0) (1, 1, 2)

(p1 p2 p3

p1 p2 p3

)
1

(1, 0, 1) (1, 1, 0)

(1, 1, 1) (1, 2, 1)

(1, 2, 2) (1, 2, 3)

3. Solutions of the consistency condition

Let us first consider condition (14) for N = 4. Taking into account (12) we find that the
elements of J0 are given by

(J0)11 = 4∂x,

(J0)12 = u1∂x + u1x,

(J0)13 = (
u2

1 + 2u2
)
∂x +

(
u2

1 + 2u2
)
x
,

(J0)14 = (
u3

1 + 3u1u2 + 3u3
)
∂x +

(
u3

1 + 3u1u2 + 3u3
)
x
,

(J0)21 = −3u1∂x,

(J0)22 = 2u2∂x + u2x,

(J0)23 = (u1u2 + 3u3)∂x + 2(u2u1x + u3x),

(J0)24 = (
u2

1u2 + 2u2
2 + u1u3 + 4u4

)
∂x + 3(u4x + u2u2x + u2u1u1x + u3u1x),

(J0)31 = −2u2∂x,

(J0)32 = 3u3∂x + u3x,

(J0)33 = (4u4 + u1u3)∂x + 2(u4x + u3u1x),

(J0)34 = (
u1u4 + 2u2u3 + u2

1u3
)
∂x + 3(u4u1x + u3u1u1x + u3u2x),

(J0)41 = −u3∂x,

(J0)42 = 4u4∂x + u4x,

(J0)43 = u1u4∂x + 2u4u1x,

(J0)44 = (
u2

1u4 + 2u2u4
)
∂x + 3u4(u1u1x + u2x).

Thus, the compatibility condition (14) reduces to

d1 = 0, d2 � 1, d3 � 1,

d4 � d2 + 1, d4 � d3 + 1,

which leads to the proposition

Proposition 1. For N = 4 the degrees (d1, d2, d3, d4) satisfying the compatibility
condition (14) are

(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0),

(0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1), (0, 1, 1, 2).
(21)
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In order to derive our general result for N � 5, we start by proving

Proposition 2. For each N ∈ N (N � 5) the degrees

di = 0, i = 1, 2, . . . , N − 3, dN−2, dN−1, dN = 0, 1, (22)

satisfy the compatibility condition (14).

Proof. We extend recursively the definition of the weights (10) by

weight
[(

∂n
x uj

)
P(u, ux, . . .)

] = j + weight[P(u, ux, . . .)],

where P(u, ux, . . .) denotes any differential polynomial in u. Taking into account (9) and (12),
we find that the elements of J0 are weight homogeneous with respect to the scaling

(u1, u2, . . . , uN) → (λu1, λ
2u2, . . . , λ

NuN),

and their weights are given by

weight[(J0)ik] = i + k − 2.

For the case i + k < 2N − 2 we have weight[(J0)ik] < 2N − 4 and, as a consequence, if
the indices (i, k) satisfy i + k < 2N − 2 then (J0)ik does not involve neither terms of the
form u

j+1
N−2, u

j+1
N−1, u

j+1
N , u

j

N−2u
l
N−1, u

j

N−2u
l
N , u

j

N−1u
l
N , j, l � 1 nor similar terms containing

derivatives. Thus,

degree[(J0)ik] � max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3],

dN−1 + [d1, . . . , dN−3], dN + [d1, . . . , dN−3]}, (23)

where [d1, . . . , dN−3] stands for degrees of terms appearing in (J0)ik which are linear
combination of d1,...,dN−3 with entire coefficients.

Now we examine the remaining elements (J0)ik , i.e.

(i, k) ∈ {(N − 2, N), (N − 1, N − 1), (N − 1, N), (N,N − 2), (N,N − 1), (N,N)}.
• weight[(J0)N−2,N ] = 2N − 4, so that (J0)N−2,N may contain terms of the form

u2
N−2, uN−2uN−2,x and we have

degree[(J0)N−2,N ] � max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3],

dN−1 + [d1, . . . , dN−3], dN + [d1, . . . , dN−3], 2dN−2}. (24)

• weight[(J0)N−1,N−1] = 2N −4. This weight allows the presence of terms such as u2
N−2∂x

and uN−2uN−2,x , which arise multiplied by the coefficients:

coeff
[
(2N − 4)P2N−4∂x, u

2
N−2∂x

] = N − 2,

coeff
[
uN−k−1(N + k − 3)PN+k−3∂x, u

2
N−2∂x

]
=

{
N − 2 if k = 1,

0 if k �= 1,
⇒ coeff

[
(J0)N−1N−1, u

2
N−2∂x

] = 0.

coeff [(N − 2)P2N−4,x , uN−2uN−2x] = N − 2,

coeff [uN−k−1(N − 2)PN+k−3,x , uN−2uN−2x]

=
{
N − 2 if k = 1,

0 if k �= 1,
⇒ coeff [(J0)N−1N−1, uN−2uN−2x] = 0.

Thus, (J0)N−1N−1 does not contain terms in u2
N−2, uN−2uN−2x and consequently

degree[(J0)N−2,N ] � max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3], dN−1

+ [d1, . . . , dN−3], dN + [d1, . . . , dN−3]}. (25)
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• weight[(J0)N−1,N ] = 2N − 3. Terms of the form u2
N−2u1, uN−2uN−1, or similar terms

containing derivatives may arise. A direct computation, similar to that in the previous
case, proves that there are no terms u2

N−2u1, u2
N−2u1,x, uN−2uN−2,xu1 in (J0)N−1,N−1.

Then we have that

degree[(J0)N−1,N ] � max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3],

dN−1 + [d1, . . . , dN−3], dN + [d1, . . . , dN−3], dN−2 + dN−1}. (26)

• weight[(J0)N,N−2] = 2N − 4. A direct computation shows that there are no terms
u2

N−2, uN−2uN−2,x in (J0)N,N−2, so that

degree[(J0)N,N−2] � max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3],

dN−1 + [d1, . . . , dN−3], dN + [d1, . . . , dN−3]}. (27)

• weight[(J0)N,N−1] = 2N−3. One can see that (J0)N,N−1 has no terms u2
N−2u1, uN−2uN−1

or similar terms containing derivatives. Consequently

degree[(J0)N,N−2] � max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3],

dN−1 + [d1, . . . , dN−3], dN + [d1, . . . , dN−3]}. (28)

• weight[(J0)NN ] = 2N − 2. This element may involve terms uN−2uN, uN−2xuN or
uN−2uNx . On the other hand, it can be checked, as in the previous cases, that terms
u2

N−2u2, u
2
N−2u

2
1, uN−2uN−1u1, u2

N−1 or similar ones containing derivatives cannot arise.
Consequently

degree[(J0)N,N−2] � max{[d1, . . . , dN−3], dN−2 + [d1, . . . , dN−3],

dN−1 + [d1, . . . , dN−3], dN + [d1, . . . , dN−3], dN−2 + dN }. (29)

In summary, by taking into account (23)–(29), we conclude that (14) is satisfied provided
that

[d1, . . . , dN−3] � 1, 2dN−2 � dN−2 + 1,

dN−2 + [d1, . . . , dN−3] � 1, dN−2 + dN−1 � dN−1 + 1,

dN−1 + [d1, . . . , dN−3] � 1, dN−2 + dN � dN + 1.

dN + [d1, . . . , dN−3] � 1,

(30)

Thus, any choice of the degrees verifying

di = 0, i = 1, 2, . . . , N − 3, dN−2, dN−1, dN � 1

satisfies (30) and in consequence it verifies (14). �

We next show that (22) constitutes the complete set of degrees satisfying (14).

Proposition 3. For each N ∈ N (N � 5) the compatibility condition (14) implies

di = 0, i = 1, 2, . . . , N − 3, dN−2, dN−1, dN � 1.

Proof. The cases N even or odd must be considered separately. Suppose first that N = 2M

with M ∈ N(M � 3). From (12) we have that

(J0)12M = (2M − 1)P2M−1∂x + (2M − 1)P2M−1,x .

Thus, it is clear that (J0)12M contains terms in

u2M−1
1 ∂x, u2

ju
2M−2j−1
1 ∂x, j = 2, . . . ,M − 1,

u2M−1∂x, u2M−2u1∂x,
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and consequently, condition (14) with n = 1 implies that

(2M − 1)d1 � d1 + 1, 2dj + (2M − 2j − 1)d1 � d1 + 1, j = 2, . . . ,M − 1,

d2M−1 � d1 + 1, d2M−2 + d1 � d1 + 1,

or equivalently

dj = 0, j = 1, 2, . . . ,M − 1, d2M−2, d2M−1 � 1. (31)

By taking now i = 2l, j = 2M(l < M) in (12) we have that

(J0)2l2M = 2(l + M − 1)P2(l+M−1)∂x + (2M − 1)P2(l+M−1),x

−
2l−1∑
k=1

u2l−k[(k + 2M − 2)Pk+2M−2∂x + (2M − 1)Pk+2M−2,x].

Then, we have that (J0)22M contains a term u2M∂x so that

d2M � d2 + 1.

Since according to (31) (M � 3)d2 = 0, we have that

d2M � 1. (32)

On the other hand, we also see that (J0)2l2M contains a term u2
l+M−1∂x . Hence, condition (14)

with n = 2l implies

2dl+M−1 � d2l + 1, for each l < M. (33)

Now from (33) we deduce the following.

• By setting l = 1 in (33), we get 2dM � d2 + 1, but d2 = 0 so that dM = 0. Thus,

M � 3 ⇒ dj = 0, j = 1, 2, . . . , M.

• Suppose that M � 4, and put l = 2 into (33), then we have that 2dM+1 � d4 + 1. But
under our hypothesis d4 = 0, so that

M � 4 ⇒ dj = 0, j = 1, 2, . . . , M + 1.

• Suppose that M � 5, and put l = 3 into (33), then 2dM+2 � d6 + 1. Again, under our
actual hypothesis d6 = 0, we have that

M � 5 ⇒ dj = 0, j = 1, 2, . . . , M + 2.

Let us now use induction to prove

M � k + 3 ⇒ dj = 0, j = 1, 2, . . . ,M + k. (34)

We have already proved (34) for k = 1, 2. Assume that it holds for k � k0 − 1 and let us
check it for k = k0.

Take M � k0 + 3 and put l = k0 + 1 in (33), then we have that

2dM+k0 � d2k0+2 + 1.

As 2k0 + 2 � M + k0 − 1 it follows that d2k0+2 = 0, so that dM+k0 = 0 which proves (34).
Finally, for a given M, take k = M − 3, then

dj = 0, j = 1, 2, . . . , 2M − 3.

Hence, by taking (31) and (32) into account, we have proved that (14) implies

dj = 0, j = 1, 2, . . . , 2M − 3, d2M−2, d2M−1, d2M � 1.
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We consider now the case N = 2M + 1 with M ∈ N (M � 2). From (12)

(J0)12M+1 = 2MP2M∂x + 2MP2M,x.

Consequently (J0)12M+1 contains terms in

u2M
1 ∂x, u2

ju
2M−2j

1 ∂x, j = 2, . . . , M, u2M∂x, u2M−1u1∂x,

and condition (14) with n = 1 implies that

2Md1 � d1 + 1, 2dj + (2M − 2j)d1 � d1 + 1, j = 2, . . . ,M,

d2M � d1 + 1, d2M−1 + d1 � d1 + 1,

or equivalently

dj = 0, j = 1, 2, . . . ,M, d2M−1, d2M � 1. (35)

On the other hand, by setting i = 2l + 1, j = 2M + 1(l < M) in (12) we have that

(J0)2l+12M+1 = 2(l + M)P2(l+M)∂x + 2MP2(l+M),x

−
2l∑

k=1

u2l+1−k[(k + 2M − 1)Pk+2M−1∂x + 2MPk+2M−1,x].

Thus, (J0)2l+12M+1 contains the term u2
M+l∂x , so that condition (14) with n = 2l + 1 implies

2dM+l � d2l+1 + 1. (36)

By putting l = 1, 2, 3 in (36) it follows:

• For l = 1 we have that 2dM+1 � d3 + 1. Thus,

M � 3 ⇒ dj = 0, j = 1, 2, . . . , M + 1.

• For l = 2 it follows that 2dM+2 � d5 + 1. Consequently

M � 4 ⇒ dj = 0, j = 1, 2, . . . , M + 2.

• For l = 3 inequality (36) reads 2dM+3 � d7 + 1 so that

M � 5 ⇒ dj = 0, j = 1, 2, . . . , M + 3.

Let us now use induction to show that

M � k + 2 ⇒ dj = 0, j = 1, 2, . . . ,M + k. (37)

We have proved (37) for k = 1, 2, 3. Suppose that it holds for k � k0 − 1 and let us check it
for k = k0. Take M � k0 + 2 and l = k0 in (36), we find

2dM+k0 � d2k0+1 + 1.

But 2k0 + 1 � M + k0 − 1, then d2k0+1 = 0, dM+k0 = 0 and (37) follows. Thus, for a given M,
if we take k = M − 2 we have that

dj = 0, j = 1, 2, . . . , 2M − 2. (38)

Finally, from the expression

(J0)22M+1 = (2M + 1)P2M+1∂x + 2MP2M+1,x − u1[2MP2M∂x + 2MP2M,x],

we have that (14) implies d2M+1 � d2 + 1 and consequently d2M+1 � 1. This fact, together
with (35) and (38) lead us to

dj = 0, j = 1, 2, . . . , 2M − 2, d2M−1, d2M, d2M+1 � 1. �

From propositions 2 and 3 it follows that

Theorem. For each N ∈ N (N � 5) the degrees (d1, . . . , dN) satisfy the compatibility
condition (14) if and only if

di = 0, i = 1, 2, . . . , N − 3, dN−2, dN−1, dN � 1. (39)
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4. Hierarchies of consistent deformations

Our next task is to classify all the compatible cases in terms of the corresponding Newton
exponent and the element σ0 (17) of the Galois group of the curve.

We start by considering the case N � 5. In order to find l0 and σ0 for each one
of the seven nontrivial choices (39), we study the asymptotic behaviour of the N branches
pi, i = 1, 2, . . . , N as k → ∞. By writing the potentials as

un =
dn∑

j=0

unjk
j

we have

• (0, . . . , 0, 0, 0, 1). In this case (1) can be written as

k = 1

uN1

(
pN −

N∑
l=1

ul0p
N−l

)
,

so that

pN
j ∼ uN1k as k → ∞, j = 1, 2, . . . , N.

Consequently, pj ∈ C
((

k
1
N

))
, j = 1, 2, . . . , N and

l0 = N, σ0 =
(

p1 p2 · · · pN−1 pN

p2 p3 · · · pN p1

)
.

• (0, . . . , 0, 0, 1, 0). Now, (1) takes the form

k = 1

uN−11

(
pN−1 −

N∑
l=1

ul0p
N−l−1 − uN0

p

)
.

Thus, the roots satisfy

pN−1
j ∼ uN−11k as k → ∞, j = 1, 2, . . . , N − 1,

pN ∼ − uN0

uN−11

1

k
as k → ∞,

and we find

l0 = N − 1, σ0 =
(

p1 p2 · · · pN−1 pN

p2 p3 · · · p1 pN

)
.

• (0, . . . , 0, 0, 1, 1). From (1) we can write

k =
N−1∑
j=0

cjp
j +

c−1

uN−11p + uN1
,

for certain coefficients cj , j = −1, 0, 1, . . . , N − 1. Hence

pN−1
j ∼ 1

cN−1
k as k → ∞, j = 1, 2, . . . , N − 1,

pN ∼ − uN1

uN−11
+

c−1

uN−11

1

k
as k → ∞,

so that

l0 = N − 1, σ0 =
(

p1 p2 · · · pN−1 pN

p2 p3 · · · p1 pN

)
.



A classification of integrable quasiclassical deformations of algebraic curves 11241

• (0, . . . , 0, 1, 0, 0). Equation (1) of the curve implies

k = 1

uN−21

(
pN−2 −

N−2∑
l=1

ul0p
N−l−2 +

uN−10

p
+

uN0

p2

)
.

Then,

pN−2
j ∼ uN−21k as k → ∞, j = 1, 2, . . . , N − 2,

p2
j ∼ uN0

uN−21

1

k
as k → ∞, j = N − 1, N.

Thus, the corresponding Galois group element is given by

σ0 =
(

p1 p2 · · · pN−2 pN−1 pN

p2 p3 · · · p1 pN pN−1

)
,

and the Newton exponent is

l0 =
{

N − 2 if N is even,

2(N − 2) if N is odd.

• (0, . . . , 0, 1, 1, 0). From (1) we have

k =
N−2∑
j=0

cjp
j +

d1

p − b1
+

d2

p
,

for certain coefficients cj , j = 0, 1, . . . , N − 2, b1 and dk , k = 1, 2. The branches satisfy

pN−2
j ∼ 1

cN−2
k as k → ∞, j = 1, 2, . . . , N − 2,

pN−1 ∼ b1 +
d1

k
as k → ∞,

pN ∼ d2

k
as k → ∞,

so that

l0 = N − 2, σ0 =
(

p1 p2 · · · pN−2 pN−1 pN

p2 p3 · · · p1 pN−1 pN

)
.

• (0, . . . , 0, 1, 0, 1) and (0, . . . , 0, 1, 1, 1). In these cases (1) implies

k =
N−2∑
j=0

cjp
j +

d1

p − b1
+

d2

p − b2
,

for certain coefficients cj , bk, dk, j = 0, 1, . . . , N − 2; k = 1, 2. Therefore

pN−2
j ∼ 1

cN−2
k as k → ∞, j = 1, 2, . . . , N − 2,

pN−1 ∼ b1 +
d1

k
as k → ∞,

pN ∼ b2 +
d2

k
as k → ∞,

so that

l0 = N − 2, σ0 =
(

p1 p2 · · · pN−2 pN−1 pN

p2 p3 · · · p1 pN−1 pN

)
.
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Table 2. Classification of (39) according to σ0 and l0.

σ0 l0 (d1, . . . , dN )

(p1 p2 · · · pN−1 pN

p2 p3 · · · pN p1

)
N (0, . . . , 0, 0, 0, 1)

(p1 p2 · · · pN−1 pN

p2 p3 · · · p1 pN

)
N − 1

(0, . . . , 0, 0, 1, 0)

(0, . . . , 0, 0, 1, 1)

(p1 · · · pN−2 pN−1 pN

p2 · · · p1 pN−1 pN

)
N − 2

(0, . . . , 0, 1, 1, 0)

(0, . . . , 0, 1, 1, 1)

(0, . . . , 0, 1, 0, 1)(p1 · · · pN−2 pN−1 pN

p2 · · · p1 pN pN−1

) N − 2 if N even
2(N − 2) if N odd

(0, . . . , 0, 1, 0, 0)

These results are summarized in table 2.
From the general theorem proved in the previous section and the explicit expressions given

above it is obvious that for N � 5 the consistency conditions (39) are satisfied by rational
curves only.

We end this section by completing the previous table for N = 4. Only the special set of
degrees (0, 1, 1, 2) remains to be analysed. The corresponding branches can be expanded as

pi = ai1k
1
2 + ai0 +

ai−1

k
1
2

+ · · · , i = 1, 2, 3, 4,

where

ai0 = ai1
2u10 + u31

4a2
i1 − 2u21

,

ai−1 = 1

8ai1
(
2a2

i1 − u21
)3

[
a6

i1

(
6u2

10 + 16u20
)

+ a4
i1

(−5u2
10u21 + 4u10u31 + 16(−u20u21 + u41)

)
− 2a2

i1

(−2u20u
2
21 + 3u10u21u31 + u2

31 + 8u21u41
)

+ u21
(−u2

31 + 4u21u41
)]

,

...
...

and ai1, i = 1, 2, 3, 4 are the solutions of the equation

a4
1 − u21a

2
1 − u42 = 0.

By labelling its solutions so that a21 = −a11, a41 = −a31, we obtain

p2(z) = p1(−z), p4(z) = p3(−z), k = z2.

Thus it follows that

l0 = 2, σ0 =
(

p1 p2 p3 p4

p2 p1 p4 p3

)
.

The results for the case N = 4 are summarized in table 3.
We note that except for the case (0, 1, 1, 2) the curves satisfying the consistency condition

for N = 4 are rational ones.
Let us now turn our attention to the problem of obtaining the hierarchy of integrable

deformations (11). It is required to determine the function R of the form (16) satisfying the
invariance condition (18). In view of (18) we discuss the different cases according to the
corresponding element σ0 of the Galois group of the curve.
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Table 3. Classification of (4) according to σ0 and l0.

σ0 l0 (d1, d2, d3, d4)(p1 p2 p3 p4

p2 p3 p4 p1

)
4 (0, 0, 0, 1)

(p1 p2 p3 p4

p2 p3 p1 p4

)
3

(0, 0, 1, 0)

(0, 0, 1, 1)

(p1 p2 p3 p4

p2 p1 p3 p4

)
2

(0, 1, 1, 0)

(0, 1, 1, 1)

(0, 1, 0, 1)(p1 p2 p3 p4

p2 p1 p4 p3

)
2

(0, 1, 0, 0)

(0, 1, 1, 2)

• σ0 =
(

p1 p2 · · · pN−1 pN

p2 p3 · · · pN p1

)
.

From tables 1, 2 and 3 we have that l0 = N ,
(
ε0 = ε = e

2πı
N

)
. For N � 4 the only choice

of degrees corresponding to σ0 is (0, . . . , 0, 0, 0, 1). We look for functions Rk = ∑N
j=1 αjpj

such that σ0(Rk) = εN−k
0 Rk, k = 0, 1, . . . , N − 1. It is easy to check that

σ0(Rk) = αNp1 +
N∑

j=2

αj−1pj ,

so that the condition σ0(Rk) = εN−k
0 Rk implies that

αj−1 = εN−k
0 αj , j = 2, . . . N − 1, N;

αN = εN−k
0 α1.

This system admits the nontrival solutions

αj = ε
(N−k)(N−j)

0 αN = ε
jk

0 αN.

Thus the functions R of the form (16) which satisfy (18) can be written as

R =
N−1∑
k=0

zkfk(z
N)

N∑
j=1

ε
jk

0 pj , (40)

with fk ∈ C((zN)), k = 0, 1, . . . , N − 1. Taking into account that ε0 = ε and recalling (19),
we see that the functions R can also be written in terms of the Lagrange resolvents as

R = f0(z
N)LN +

N−1∑
k=1

zkfk(z
N)Lk,

which coincides with the first equation for N = 3 in (20).

• σ0 =
(

p1 · · · pN−2 pN−1 pN

p2 · · · pN−1 p1 pN

)
.

The corresponding Newton exponent is l0 = N − 1
(
ε0 = e

2πı
N−1

)
and for N � 4 the

degrees of the potentials are (0, . . . , 0, 0, 1, 0) and (0, . . . , 0, 0, 1, 1). In this case we have
that σ0(pN) = pN , or equivalently pN ∈ C((k)). Moreover, we need N − 1 additional
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functions R verifying the invariance condition (18). Proceeding as in the previous case we
look for functions of the form

Rk =
N−1∑
j=1

αjpj , such that σ0(Rk) = εN−1−k
0 Rk, k = 0, 1, . . . , N − 2.

Since the action of σ0 on the function Rk is given by

σ0(Rk) = αNp1 +
N−1∑
j=2

αj−1pj ,

the condition σ0(Rk) = εN−1−k
0 Rk leads to

αj−1 = εN−1−k
0 αj , j = N − 1, N − 2 . . . , 2

αN−1 = εN−1−k
0 α1,

so that αj = ε
(N−1−k)(N−1−j)

0 αN = ε
jk

0 αN , and

R =
N−2∑
k=0

zkfk(z
N−1)

N−1∑
j=1

ε
jk

0 pj + fN−1(z
N−1)pN . (41)

Example. For N = 4

R = f0(z
3)(p1 + p2 + p3) + zf1(z

3)
(
e

2π i
3 p1 + e

4π i
3 p2 + p3

)
+ z2f2(z

3)
(
e

4π i
3 p1 + e

2π i
3 p2 + p3

)
+ f3(z

3)p4.

• σ0 =
(

p1 · · · pN−2 pN−1 pN

p2 · · · p1 pN−1 pN

)
.

In this case σ0, l0 = N − 2,
(
ε0 = e

2πı
N−2

)
. For N � 4 it corresponds to the sets of degrees

(0, . . . , 0, 1, 0, 1), (0, . . . , 0, 1, 1, 0) and (0, . . . , 0, 1, 1, 1). Note that pN−1, pN ∈ C((k)).
Let us look for functions

Rk =
N−2∑
j=1

αjpj , verifying σ0(Rk) = εN−2−k
0 Rk, k = 0, 1, . . . , N − 3.

We find that

αj−1 = εN−2−k
0 αj , j = N − 2, N − 3, . . . , 2

αN−2 = εN−2−k
0 α1,

then αj = ε
(N−2−k)(N−2−j)

0 αN−2 = ε
jk

0 αN−2, and

R =
N−3∑
k=0

zkfk(z
N−2)

N−2∑
j=1

ε
jk

0 pj + fN−2(z
N−2)pN−1 + fN−1(z

N−2)pN . (42)

• σ0 =
(

p1 · · · pN−2 pN−1 pN

p2 · · · p1 pN pN−1

)
.

This element corresponds to the sets of degrees (0, . . . , 0, 1, 0, 0) and, in the particular case
N = 4, to the special choice (0, 1, 1, 2) too. From the discussion in section 3 it follows that
the Newton exponent of σ0 depends on whether N is even or odd.
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• N even: l0 = N − 2
(
ε0 = e

2πı
N−2

)
. It is easy to see that pN−1 + pN ∈ C((k))

and σ0(−pN−1 + pN) = −(−pN−1 + pN). On the other hand, since σ0 acts on
pj , j = 1, 2, . . . , N − 2 and ε0 coincides with the previous one, we have again that

Rk =
N−2∑
j=1

ε
jk

0 pj , k = 0, 1, . . . , N − 3,

satisfy σ0(Rk) = εN−2−k
0 Rk . Thus R is now given by

R =
N−3∑
k=0

zkfk(z
N−2)

N−2∑
j=1

ε
jk

0 pj + z
N−2

2 fN−2(z
N−2)(pN−1 − pN−1)

+ fN−1(z
N−2)(pN−1 + pN). (43)

Example. For N = 4

R = f0(z
2)(p1 + p2) + zf1(z

2)(−p1 + p2) + zf2(z
2)(−p3 + p4) + f3(z

2)(p3 + p4).

◦N odd: l0 = 2(N − 2)
(
ε0 = e

πı
N−2

)
. Again in this case pN−1 + pN ∈ C((k)) and

σ0(−pN−1 + pN) = −(−pN−1 + pN). Moreover, if we look for functions Rk = ∑N−2
j=1 αjpj

such that

σ0(Rk) = ε
2(N−2−k)
0 Rk, k = 0, . . . , N − 3,

by proceeding as in the previous cases, we find that αj = ε
2(N−2−k)(N−2−j)

0 αN−2 = ε
2jk

0 αN−2,
so that

R =
N−3∑
k=0

z2kfk(z
2(N−2))

N−2∑
j=1

ε
2jk

0 pj + zN−2fN−2(z
2(N−2))(pN − pN−1)

+ fN−1(z
2(N−2))(pN−1 + pN). (44)

Example. For N = 5

R = f0(z
6)(p1 + p2 + p3) + z2f1(z

6)
(
e

2π i
3 p1 + e

4π i
3 p2 + p3

)
+ z4f2(z

6)
(
e

4π i
3 p1 + e

2π i
3 p2 + p3

)
+ z3f3(z

6)(−p4 + p5) + f4(z
6)(p4 + p5).

Thus, the integrable deformations (11), (16) are determined by the expressions of R in
(40), (41), (42), (43) or (44) depending on σ0 and the Newton exponent l0.
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