A classification of integrable quasiclassical deformations of algebraic curves

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 3911231
(http://iopscience.iop.org/0305-4470/39/36/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 03/06/2010 at 04:49

Please note that terms and conditions apply.

A classification of integrable quasiclassical deformations of algebraic curves*

B Konopelchenko ${ }^{1}$, L Martínez Alonso ${ }^{2}$ and E Medina 3
${ }^{1}$ Dipartimento di Fisica, Universitá di Lecce and Sezione INFN 73100 Lecce, Italy
${ }^{2}$ Departamento de Física Teórica II, Universidad Complutense E28040 Madrid, Spain
${ }^{3}$ Departamento de Matemáticas, Universidad de Cádiz E11510 Puerto Real, Cádiz, Spain

Received 20 February 2006, in final form 14 July 2006
Published 18 August 2006
Online at stacks.iop.org/JPhysA/39/11231

Abstract

A previously introduced scheme for describing integrable deformations of algebraic curves is completed. Lenard relations are used to characterize and classify these deformations in terms of hydrodynamic-type systems. A general solution of the compatibility conditions for consistent deformations is given and expressions for the solutions of the corresponding Lenard relations are provided.

PACS number: 02.30.Ik

1. Introduction

Algebraic curves find important applications in the theory of integrable systems [1-3]. They are particularly relevant [4-7] in the study of the zero-dispersion limit of integrable systems and the analysis of Whitham equations. In [6, 7] Krichever formulated a general method to characterize dispersionless integrable systems underlying the deformations of algebraic curves in the Whitham averaging method. A different scheme to determine integrable deformations of algebraic curves \mathcal{C} of the form

$$
\begin{equation*}
F(p, k):=p^{N}-\sum_{n=1}^{N} u_{n}(k) p^{N-n}=0 \tag{1}
\end{equation*}
$$

was introduced in [8-11]. Here the coefficients (potentials) are assumed to be general polynomials in k. Our previous work focused on curves of degrees $N=2$ and 3 , and the aim of the present paper is to complete the analysis by considering the general case of algebraic curves of arbitrary degree N.

[^0]The method proposed in [8-11] applies for finding deformations $\mathcal{C}(x, t)$ of (1) such that the branches of the multiple-valued function $p(k)=\left(p_{1}(k), \ldots, p_{N}(k)\right)^{T}$ determined by (1) obey an equation of the form

$$
\begin{equation*}
\partial_{t} p_{i}=\partial_{x}\left(\sum_{r=1}^{N} a_{r}(k, u(k)) p_{i}^{N-r}\right), \quad a_{r} \in \mathbb{C}[k] \tag{2}
\end{equation*}
$$

where a_{r} are functions of k and $u(k)=\left(u_{1}(k), \ldots, u_{N}(k)\right)$. As a consequence of (2) the potentials $u(k)$ satisfy an evolution equation of hydrodynamic type and the problem is to determine expressions for a_{r} such that (2) is consistent with the polynomial dependence of u on the variable k. That is to say, if $\left(d_{1}, \ldots, d_{N}\right)$ are the degrees of the polynomials $\left(u_{1}(k), \ldots, u_{N}(k)\right)$, then degree $\left(\partial_{t} u_{n}\right) \leqslant d_{n}$ must be satisfied for all n. At this point a Lenard relation allows us to formulate a sufficient condition for the consistency of (2) in terms of a system of inequalities involving the degrees d_{n} only. Thus we are led to the problem of determining the degrees satisfying the consistency condition (consistent degrees) for each N. In [9] it was found that for $N=2$ the consistent degrees $\left(d_{1}, d_{2}\right)$ are characterized by the inequality $d_{1} \leqslant d_{2}+1$. For $N=3$ there is only a finite set of consistent degrees given by [11]:

$$
\begin{array}{llllll}
(0,0,1) & (0,1,0) & (0,1,1) & (0,1,2) & (1,0,0) & (1,0,1) \\
(1,1,0) & (1,1,1) & (1,1,2) & (1,2,1) & (1,2,2) & (1,2,3) .
\end{array}
$$

In the present work, we complete these results. Thus, it is first shown that for $N=4$ the set of consistent degrees is

$$
\begin{array}{llll}
(0,0,0,1) & (0,0,1,0) & (0,0,1,1) & (0,1,0,0) \\
(0,1,0,1) & (0,1,1,0) & (0,1,1,1) & (0,1,1,2) \tag{4}
\end{array}
$$

and then it is proved that for $N \geqslant 5$ the consistent degrees $\left(d_{1}, \ldots, d_{N}\right)$ are given by

$$
\begin{equation*}
d_{i}=0, \quad i=1,2, \ldots, N-3, \quad d_{N-2}, \quad d_{N-1}, \quad d_{N} \leqslant 1 \tag{5}
\end{equation*}
$$

We note the fact that no compatible degrees $d_{i} \geqslant 2$ arise for $N \geqslant 5$. This implies that for $N \geqslant 5$ the algebraic curves satisfying the consistency conditions have zero genus since they are obviously rational ones. In contrast for $N=4$ and $N=2,3$ (see also [8-11]) the cases involving consistent degrees equal or higher than 2 (equal or higher than 3 for $N=2$) generically correspond to algebraic curves with non-zero genus. Hence, the degree $N=5$ represents a threshold for a change in the properties of algebraic curves. This feature is reminiscent of the statement of the classical Abel theorem [12].

By substituting the branches p_{i} by their Laurent series in k into (2), infinite series of conservation laws follow. It means that the deformations of (1) supplied by our method are integrable. In fact, the corresponding hydrodynamic systems satisfied by the potentials $u_{n}(k)$ represent the quasiclassical (dispersionless) limits of the standard integrable models arising from the compatibility between generalized (energy-dependent) spectral problems

$$
\begin{equation*}
\left(\partial_{x}^{N}-\sum_{n=1}^{N} u_{n}(k, x) \partial_{x}^{N-n}\right) \psi=0, \tag{6}
\end{equation*}
$$

and equations of the form

$$
\begin{equation*}
\partial_{t} \psi=\left(\sum_{r=1}^{N} a_{r}(k, x, t) \partial_{x}^{N-r}\right) \psi . \tag{7}
\end{equation*}
$$

The work is organized as follows. We first outline our method in section 2 . Then section 3 is devoted to determine and classify the curves (1) which admit deformations consistent with
the degrees of their potentials. Finally, in section 4 we characterize the hydrodynamic-type systems which govern these deformations.

2. Deformations of algebraic curves

In order to write equation (2) in terms of the potentials u_{n} we introduce the power sums

$$
\begin{equation*}
\mathcal{P}_{s}=\frac{1}{s}\left(p_{1}^{s}+\cdots+p_{N}^{s}\right), \quad s \geqslant 1 \tag{8}
\end{equation*}
$$

One can relate potentials and power sums through Newton recurrence formulae, the solution of which is given by Waring's formula [13]

$$
\begin{equation*}
\mathcal{P}_{s}=\sum_{1 \leqslant i \leqslant s}^{(s)} \frac{1}{i}\left(u_{1}+\cdots+u_{N}\right)^{i}, \tag{9}
\end{equation*}
$$

where the superscript (s) in the summation symbol indicates that only the terms of weight s are retained, with the weights being defined as

$$
\begin{equation*}
\text { weight }\left[u_{1}^{\alpha_{1}} u_{2}^{\alpha_{2}} \cdots u_{N}^{\alpha_{N}}\right]:=\sum_{j=1}^{N} j \alpha_{j} . \tag{10}
\end{equation*}
$$

Using these variables, equation (2) can be rewritten as $[10,11]$

$$
\begin{equation*}
\partial_{t} \mathbf{u}=J_{0} \mathbf{a}, \tag{11}
\end{equation*}
$$

where
$J_{0}=T^{T} V^{T} \partial_{x} \cdot V, \quad \mathbf{u}=\left(u_{1}, u_{2}, \ldots u_{N}\right)^{T}, \quad \mathbf{a}=\left(a_{N}, a_{N-1}, \ldots, a_{1}\right)^{T}$,
$T:=\left(\begin{array}{cccc}1 & -u_{1} & \cdots & -u_{N-1} \\ 0 & 1 & \cdots & -u_{N-2} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1\end{array}\right) \quad V:=\left(\begin{array}{cccc}1 & p_{1} & \cdots & p_{1}^{N-1} \\ 1 & p_{2} & \cdots & p_{2}^{N-1} \\ \vdots & \vdots & & \vdots \\ 1 & p_{N} & \cdots & p_{N}^{N-1}\end{array}\right)$.
The elements of J_{0} can be easily written in terms of the power sums as
$\left(J_{0}\right)_{11}=N \partial_{x}$,
$\left(J_{0}\right)_{i 1}=(i-1) \mathcal{P}_{i-1} \partial_{x}-\sum_{l=2}^{i-1} u_{i-l} \mathcal{P}_{l-1} \partial_{x}-N u_{i-1} \partial_{x}, \quad$ if $\quad i \neq 1$,
$\left(J_{0}\right)_{i j}=(i+j-2) \mathcal{P}_{i+j-2} \partial_{x}+(j-1) \mathcal{P}_{i+j-2, x}$
$\quad-\sum_{k=1}^{i-1} u_{i-k}\left[(k+j-2) \mathcal{P}_{k+j-2} \partial_{x}+(j-1) \mathcal{P}_{k+j-2, x}\right], \quad$ if $j \neq 1$.
The problem now is to determine expressions for \mathbf{a} (in (11)) depending on k and \mathbf{u}, such that the flow (11) is consistent with the polynomial dependence of \mathbf{u} on the variable k. That is to say, if $d_{n}:=$ degree $\left(u_{n}\right)$ are the degrees of the coefficients u_{n} as polynomials in k, then

$$
\operatorname{degree}\left(J_{0} \mathbf{a}\right)_{n} \leqslant d_{n}, \quad n=1, \ldots N
$$

must be satisfied. The strategy [9-11] for finding consistent deformations is to solve Lenardtype relations

$$
\begin{equation*}
J_{0} \mathbf{r}=0, \quad \mathbf{r}:=\left(r_{1}, \ldots, r_{N}\right)^{\top}, \quad r_{i} \in \mathbb{C}((k)), \tag{13}
\end{equation*}
$$

and take $\mathbf{a}:=\mathbf{r}_{+}$, where $(\cdot)_{+}$and $(\cdot)_{-}$indicate the parts of non-negative and negative powers in k, respectively. Now from the identity

$$
J_{0} \mathbf{a}=J_{0} \mathbf{r}_{+}=-J_{0} \mathbf{r}_{-},
$$

it is clear that a sufficient condition for the consistency of (11) is that

$$
\begin{equation*}
\max _{m=1, \ldots, N}\left\{\operatorname{degree}\left(J_{0}\right)_{n m}\right\} \leqslant d_{n}+1, \quad n=1, \ldots, N \tag{14}
\end{equation*}
$$

This condition for consistency only depends on the curve (1) and does not refer to the particular solution of the Lenard relation

In the subsequent discussion we will use an important result concerning the branches $p_{i}(k)$: let $\mathbb{C}((\lambda))$ denote the field of Laurent series in λ with at most a finite number of terms with positive powers, then we have [14, 15]:
Newton Theorem. There exists a positive integer l such that the N branches

$$
\begin{equation*}
p_{j}(z):=\left.\left(p_{j}(k)\right)\right|_{k=z^{l}} \tag{15}
\end{equation*}
$$

are elements of $\mathbb{C}((z))$. Furthermore, if $F(p, k)$ is irreducible as a polynomial over the field $\mathbb{C}((k))$ then $l_{0}=N$ is the least permissible l and the branches $p_{j}(z)$ can be labelled so that

$$
p_{j}(z)=p_{N}\left(\epsilon^{j} z\right), \quad \epsilon:=\exp \left(\frac{2 \pi \iota}{N}\right)
$$

Notation convention. Henceforth, given an algebraic curve \mathcal{C} we will denote by z the variable associated with the least positive integer l_{0} for which the substitution $k=z^{l_{0}}$ implies $p_{j} \in \mathbb{C}((z)), \forall j$. We refer to l_{0} as the Newton exponent of \mathcal{C}.

It was proved in $[10,11]$ that the solution of the Lenard relation $J_{0} \mathbf{r}=0$ is given by
$\mathbf{r}=T \nabla_{\mathbf{u}} R, \quad R=\sum_{i=1}^{N} g_{i}(z) p_{i}, \quad \nabla_{\mathbf{u}} R=\left(\frac{\partial R}{\partial u_{1}}, \ldots, \frac{\partial R}{\partial u_{N}}\right)^{T}$,
with $g_{i} \in \mathbb{C}((z))$. The problem of choosing the functions g_{i} such that $R \in \mathbb{C}((k))$ (and consequently $\mathbf{r} \in \mathbb{C}((k)))$ was solved in [11] by introducing the element σ_{0} of the Galois group of the curve

$$
\begin{equation*}
\sigma_{0}\left(p_{j}\right)(z):=p_{j}\left(\epsilon_{0} z\right), \quad \epsilon_{0}:=\exp \left(\frac{2 \pi \iota}{l_{0}}\right) \tag{17}
\end{equation*}
$$

Thus it is clear that the requirement of $R \in \mathbb{C}((k))$ is equivalent to the invariance of R under σ_{0}, i.e.

$$
\begin{equation*}
R\left(\epsilon_{0} z, \sigma_{0} \boldsymbol{p}\right)=R(z, \boldsymbol{p}) \tag{18}
\end{equation*}
$$

The scheme now consists in using the Lagrange resolvents [12]

$$
\begin{equation*}
\mathcal{L}_{i}:=\sum_{j=1}^{N}\left(\epsilon^{i}\right)^{j} p_{j}, \quad i=1,2, \ldots, N \tag{19}
\end{equation*}
$$

to construct functions R satisfying (18) and such that $R \in \mathbb{C}((k))$.
The case $N=3$ was completely solved in [11]. There arise twelve possible choices (3) which are classified in terms of σ_{0} and l_{0} according to table 1 and the invariant functions R in (16) are given by

$$
\begin{array}{ll}
l_{0}=3, & R=z f_{1}\left(z^{3}\right) \mathcal{L}_{1}+z^{2} f_{2}\left(z^{3}\right) \mathcal{L}_{2}+f_{3}\left(z^{3}\right) \mathcal{L}_{3}, \\
l_{0}=2, & R=f_{1}\left(z^{2}\right)\left(\mathcal{L}_{1}+\mathcal{L}_{2}\right)+z f_{2}\left(z^{2}\right)\left(\mathcal{L}_{1}-\mathcal{L}_{2}\right)+f_{3}\left(z^{2}\right) \mathcal{L}_{3} \tag{20}\\
l_{0}=1, & R=f_{1}(z) \mathcal{L}_{1}+f_{2}(z) \mathcal{L}_{2}+f_{3}(z) \mathcal{L}_{3},
\end{array}
$$

with f_{1}, f_{2} and f_{3} being arbitrary analytic functions of k.

Table 1. Classification of (3) according to σ_{0} and l_{0}.

σ_{0}		l_{0}
$\left(d_{1}, d_{2}, d_{3}\right)$		
$\left(\begin{array}{lll}p_{1} & p_{2} & p_{3} \\ p_{2} & p_{3} & p_{1}\end{array}\right)$	3	$(0,0,1)$
$\left(\begin{array}{lll}p_{1} & p_{2} & p_{3} \\ p_{2} & p_{1} & p_{3}\end{array}\right)$	2	$(0,1,2)$
$(0,1,0)$	$(0,1,1)$	
$(1,0,0)$	$(1,1,2)$	
$\left(\begin{array}{lll}p_{1} & p_{2} & p_{3} \\ p_{1} & p_{2} & p_{3}\end{array}\right)$	1	$(1,0,1)$ $(1,1,1)$ $(1,2,2)$$(1,2,1)$

3. Solutions of the consistency condition

Let us first consider condition (14) for $N=4$. Taking into account (12) we find that the elements of J_{0} are given by

$$
\begin{aligned}
& \left(J_{0}\right)_{11}=4 \partial_{x}, \\
& \left(J_{0}\right)_{12}=u_{1} \partial_{x}+u_{1 x}, \\
& \left(J_{0}\right)_{13}=\left(u_{1}^{2}+2 u_{2}\right) \partial_{x}+\left(u_{1}^{2}+2 u_{2}\right)_{x}, \\
& \left(J_{0}\right)_{14}=\left(u_{1}^{3}+3 u_{1} u_{2}+3 u_{3}\right) \partial_{x}+\left(u_{1}^{3}+3 u_{1} u_{2}+3 u_{3}\right)_{x}, \\
& \left(J_{0}\right)_{21}=-3 u_{1} \partial_{x}, \\
& \left(J_{0}\right)_{22}=2 u_{2} \partial_{x}+u_{2 x}, \\
& \left(J_{0}\right)_{23}=\left(u_{1} u_{2}+3 u_{3}\right) \partial_{x}+2\left(u_{2} u_{1 x}+u_{3 x}\right), \\
& \left(J_{0}\right)_{24}=\left(u_{1}^{2} u_{2}+2 u_{2}^{2}+u_{1} u_{3}+4 u_{4}\right) \partial_{x}+3\left(u_{4 x}+u_{2} u_{2 x}+u_{2} u_{1} u_{1 x}+u_{3} u_{1 x}\right), \\
& \left(J_{0}\right)_{31}=-2 u_{2} \partial_{x}, \\
& \left(J_{0}\right)_{32}=3 u_{3} \partial_{x}+u_{3 x}, \\
& \left(J_{0}\right)_{33}=\left(4 u_{4}+u_{1} u_{3}\right) \partial_{x}+2\left(u_{4 x}+u_{3} u_{1 x}\right), \\
& \left(J_{0}\right)_{34}=\left(u_{1} u_{4}+2 u_{2} u_{3}+u_{1}^{2} u_{3}\right) \partial_{x}+3\left(u_{4} u_{1 x}+u_{3} u_{1} u_{1 x}+u_{3} u_{2 x}\right), \\
& \left(J_{0}\right)_{41}=-u_{3} \partial_{x}, \\
& \left(J_{0}\right)_{42}=4 u_{4} \partial_{x}+u_{4 x}, \\
& \left(J_{0}\right)_{43}=u_{1} u_{4} \partial_{x}+2 u_{4} u_{1 x}, \\
& \left(J_{0}\right)_{44}=\left(u_{1}^{2} u_{4}+2 u_{2} u_{4}\right) \partial_{x}+3 u_{4}\left(u_{1} u_{1 x}+u_{2 x}\right) .
\end{aligned}
$$

Thus, the compatibility condition (14) reduces to

$$
\begin{aligned}
& d_{1}=0, \quad d_{2} \leqslant 1, \quad d_{3} \leqslant 1, \\
& d_{4} \leqslant d_{2}+1,
\end{aligned} d_{4} \leqslant d_{3}+1,
$$

which leads to the proposition
Proposition 1. For $N=4$ the degrees $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$ satisfying the compatibility condition (14) are
$(0,0,0,1)$,
$(0,0,1,0)$,
$(0,0,1,1)$,
$(0,1,0,0)$,
$(0,1,0,1)$,
($0,1,1,0$),
$(0,1,1,1)$,
($0,1,1,2$).

In order to derive our general result for $N \geqslant 5$, we start by proving
Proposition 2. For each $N \in \mathbb{N}(N \geqslant 5)$ the degrees

$$
\begin{equation*}
d_{i}=0, \quad i=1,2, \ldots, N-3, \quad d_{N-2}, d_{N-1}, d_{N}=0,1, \tag{22}
\end{equation*}
$$

satisfy the compatibility condition (14).
Proof. We extend recursively the definition of the weights (10) by

$$
\text { weight }\left[\left(\partial_{x}^{n} u_{j}\right) \mathrm{P}\left(\mathbf{u}, \mathbf{u}_{x}, \ldots\right)\right]=j+\operatorname{weight}\left[\mathrm{P}\left(\mathbf{u}, \mathbf{u}_{x}, \ldots\right)\right],
$$

where $\mathrm{P}\left(\mathbf{u}, \mathbf{u}_{x}, \ldots\right)$ denotes any differential polynomial in \mathbf{u}. Taking into account (9) and (12), we find that the elements of J_{0} are weight homogeneous with respect to the scaling

$$
\left(u_{1}, u_{2}, \ldots, u_{N}\right) \rightarrow\left(\lambda u_{1}, \lambda^{2} u_{2}, \ldots, \lambda^{N} u_{N}\right)
$$

and their weights are given by

$$
\text { weight }\left[\left(J_{0}\right)_{i k}\right]=i+k-2 .
$$

For the case $i+k<2 N-2$ we have weight[$\left.\left(J_{0}\right)_{i k}\right]<2 N-4$ and, as a consequence, if the indices (i, k) satisfy $i+k<2 N-2$ then $\left(J_{0}\right)_{i k}$ does not involve neither terms of the form $u_{N-2}^{j+1}, u_{N-1}^{j+1}, u_{N}^{j+1}, u_{N-2}^{j} u_{N-1}^{l}, u_{N-2}^{j} u_{N}^{l}, u_{N-1}^{j} u_{N}^{l}, j, l \geqslant 1$ nor similar terms containing derivatives. Thus,
degree $\left[\left(J_{0}\right)_{i k}\right] \leqslant \max \left\{\left[d_{1}, \ldots, d_{N-3}\right], d_{N-2}+\left[d_{1}, \ldots, d_{N-3}\right]\right.$,

$$
\begin{equation*}
\left.d_{N-1}+\left[d_{1}, \ldots, d_{N-3}\right], d_{N}+\left[d_{1}, \ldots, d_{N-3}\right]\right\} \tag{23}
\end{equation*}
$$

where $\left[d_{1}, \ldots, d_{N-3}\right]$ stands for degrees of terms appearing in $\left(J_{0}\right)_{i k}$ which are linear combination of d_{1}, \ldots, d_{N-3} with entire coefficients.

Now we examine the remaining elements $\left(J_{0}\right)_{i k}$, i.e.
$(i, k) \in\{(N-2, N),(N-1, N-1),(N-1, N),(N, N-2),(N, N-1),(N, N)\}$.

- weight $\left[\left(J_{0}\right)_{N-2, N}\right]=2 N-4$, so that $\left(J_{0}\right)_{N-2, N}$ may contain terms of the form $u_{N-2}^{2}, u_{N-2} u_{N-2, x}$ and we have
$\operatorname{degree}\left[\left(J_{0}\right)_{N-2, N}\right] \leqslant \max \left\{\left[d_{1}, \ldots, d_{N-3}\right], d_{N-2}+\left[d_{1}, \ldots, d_{N-3}\right]\right.$,

$$
\begin{equation*}
\left.d_{N-1}+\left[d_{1}, \ldots, d_{N-3}\right], d_{N}+\left[d_{1}, \ldots, d_{N-3}\right], 2 d_{N-2}\right\} \tag{24}
\end{equation*}
$$

- weight $\left[\left(J_{0}\right)_{N-1, N-1}\right]=2 N-4$. This weight allows the presence of terms such as $u_{N-2}^{2} \partial_{x}$ and $u_{N-2} u_{N-2, x}$, which arise multiplied by the coefficients:

$$
\begin{aligned}
& \operatorname{coeff}\left[(2 N-4) \mathcal{P}_{2 N-4} \partial_{x}, u_{N-2}^{2} \partial_{x}\right]=N-2, \\
& \operatorname{coeff}\left[u_{N-k-1}(N+k-3) \mathcal{P}_{N+k-3} \partial_{x}, u_{N-2}^{2} \partial_{x}\right] \\
& =\left\{\begin{array}{ll}
N-2 & \text { if } k=1, \\
0 & \text { if } k \neq 1,
\end{array} \quad \Rightarrow \quad \operatorname{coeff}\left[\left(J_{0}\right)_{N-1 N-1}, u_{N-2}^{2} \partial_{x}\right]=0 .\right. \\
& \operatorname{coeff}\left[(N-2) \mathcal{P}_{2 N-4, x}, u_{N-2} u_{N-2 x}\right]=N-2, \\
& \operatorname{coeff}\left[u_{N-k-1}(N-2) \mathcal{P}_{N+k-3, x}, u_{N-2} u_{N-2 x}\right] \\
& =\left\{\begin{array}{ll}
N-2 & \text { if } k=1, \\
0 & \text { if } k \neq 1,
\end{array} \Rightarrow \quad \operatorname{coeff}\left[\left(J_{0}\right)_{N-1 N-1}, u_{N-2} u_{N-2 x}\right]=0 .\right.
\end{aligned}
$$

Thus, $\left(J_{0}\right)_{N-1 N-1}$ does not contain terms in $u_{N-2}^{2}, u_{N-2} u_{N-2 x}$ and consequently

$$
\begin{gather*}
\operatorname{degree}\left[\left(J_{0}\right)_{N-2, N}\right] \leqslant \max \left\{\left[d_{1}, \ldots, d_{N-3}\right], d_{N-2}+\left[d_{1}, \ldots, d_{N-3}\right], d_{N-1}\right. \\
\left.+\left[d_{1}, \ldots, d_{N-3}\right], d_{N}+\left[d_{1}, \ldots, d_{N-3}\right]\right\} . \tag{25}
\end{gather*}
$$

- weight $\left[\left(J_{0}\right)_{N-1, N}\right]=2 N-3$. Terms of the form $u_{N-2}^{2} u_{1}, u_{N-2} u_{N-1}$, or similar terms containing derivatives may arise. A direct computation, similar to that in the previous case, proves that there are no terms $u_{N-2}^{2} u_{1}, u_{N-2}^{2} u_{1, x}, u_{N-2} u_{N-2, x} u_{1}$ in $\left(J_{0}\right)_{N-1, N-1}$. Then we have that

$$
\begin{align*}
& \text { degree }\left[\left(J_{0}\right)_{N-1, N}\right] \leqslant \max \left\{\left[d_{1}, \ldots, d_{N-3}\right], d_{N-2}+\left[d_{1}, \ldots, d_{N-3}\right]\right. \\
&\left.d_{N-1}+\left[d_{1}, \ldots, d_{N-3}\right], d_{N}+\left[d_{1}, \ldots, d_{N-3}\right], d_{N-2}+d_{N-1}\right\} \tag{26}
\end{align*}
$$

- weight $\left[\left(J_{0}\right)_{N, N-2}\right]=2 N-4$. A direct computation shows that there are no terms $u_{N-2}^{2}, u_{N-2} u_{N-2, x}$ in $\left(J_{0}\right)_{N, N-2}$, so that

$$
\text { degree }\left[\left(J_{0}\right)_{N, N-2}\right] \leqslant \max \left\{\left[d_{1}, \ldots, d_{N-3}\right], d_{N-2}+\left[d_{1}, \ldots, d_{N-3}\right]\right.
$$

$$
\begin{equation*}
\left.d_{N-1}+\left[d_{1}, \ldots, d_{N-3}\right], d_{N}+\left[d_{1}, \ldots, d_{N-3}\right]\right\} \tag{27}
\end{equation*}
$$

- weight $\left[\left(J_{0}\right)_{N, N-1}\right]=2 N-3$. One can see that $\left(J_{0}\right)_{N, N-1}$ has no terms $u_{N-2}^{2} u_{1}, u_{N-2} u_{N-1}$ or similar terms containing derivatives. Consequently

$$
\begin{gather*}
\operatorname{degree}\left[\left(J_{0}\right)_{N, N-2}\right] \leqslant \max \left\{\left[d_{1}, \ldots, d_{N-3}\right], d_{N-2}+\left[d_{1}, \ldots, d_{N-3}\right],\right. \\
\left.d_{N-1}+\left[d_{1}, \ldots, d_{N-3}\right], d_{N}+\left[d_{1}, \ldots, d_{N-3}\right]\right\} . \tag{28}
\end{gather*}
$$

- weight $\left[\left(J_{0}\right)_{N N}\right]=2 N-2$. This element may involve terms $u_{N-2} u_{N}, u_{N-2 x} u_{N}$ or $u_{N-2} u_{N x}$. On the other hand, it can be checked, as in the previous cases, that terms $u_{N-2}^{2} u_{2}, u_{N-2}^{2} u_{1}^{2}, u_{N-2} u_{N-1} u_{1}, u_{N-1}^{2}$ or similar ones containing derivatives cannot arise. Consequently

$$
\begin{align*}
\text { degree }\left[\left(J_{0}\right)_{N, N-2}\right] & \leqslant \max \left\{\left[d_{1}, \ldots, d_{N-3}\right], d_{N-2}+\left[d_{1}, \ldots, d_{N-3}\right]\right. \\
d_{N-1} & \left.+\left[d_{1}, \ldots, d_{N-3}\right], d_{N}+\left[d_{1}, \ldots, d_{N-3}\right], d_{N-2}+d_{N}\right\} . \tag{29}
\end{align*}
$$

In summary, by taking into account (23)-(29), we conclude that (14) is satisfied provided that

$$
\begin{array}{ll}
{\left[d_{1}, \ldots, d_{N-3}\right] \leqslant 1,} & 2 d_{N-2} \leqslant d_{N-2}+1, \\
d_{N-2}+\left[d_{1}, \ldots, d_{N-3}\right] \leqslant 1, & d_{N-2}+d_{N-1} \leqslant d_{N-1}+1, \\
d_{N-1}+\left[d_{1}, \ldots, d_{N-3}\right] \leqslant 1, & d_{N-2}+d_{N} \leqslant d_{N}+1 . \tag{30}\\
d_{N}+\left[d_{1}, \ldots, d_{N-3}\right] \leqslant 1, &
\end{array}
$$

Thus, any choice of the degrees verifying

$$
d_{i}=0, \quad i=1,2, \ldots, N-3, \quad d_{N-2}, d_{N-1}, d_{N} \leqslant 1
$$

satisfies (30) and in consequence it verifies (14).
We next show that (22) constitutes the complete set of degrees satisfying (14).
Proposition 3. For each $N \in \mathbb{N}(N \geqslant 5)$ the compatibility condition (14) implies

$$
d_{i}=0, \quad i=1,2, \ldots, N-3, \quad d_{N-2}, d_{N-1}, d_{N} \leqslant 1
$$

Proof. The cases N even or odd must be considered separately. Suppose first that $N=2 M$ with $M \in \mathbb{N}(M \geqslant 3)$. From (12) we have that

$$
\left(J_{0}\right)_{12 M}=(2 M-1) \mathcal{P}_{2 M-1} \partial_{x}+(2 M-1) \mathcal{P}_{2 M-1, x} .
$$

Thus, it is clear that $\left(J_{0}\right)_{12 M}$ contains terms in

$$
\begin{array}{ll}
u_{1}^{2 M-1} \partial_{x}, & u_{j}^{2} u_{1}^{2 M-2 j-1} \partial_{x}, \quad j=2, \ldots, M-1, \\
u_{2 M-1} \partial_{x}, & u_{2 M-2} u_{1} \partial_{x},
\end{array}
$$

and consequently, condition (14) with $n=1$ implies that
$(2 M-1) d_{1} \leqslant d_{1}+1, \quad 2 d_{j}+(2 M-2 j-1) d_{1} \leqslant d_{1}+1, \quad j=2, \ldots, M-1$,
$d_{2 M-1} \leqslant d_{1}+1, \quad d_{2 M-2}+d_{1} \leqslant d_{1}+1$,
or equivalently

$$
\begin{equation*}
d_{j}=0, \quad j=1,2, \ldots, M-1, \quad d_{2 M-2}, d_{2 M-1} \leqslant 1 \tag{31}
\end{equation*}
$$

By taking now $i=2 l, j=2 M(l<M)$ in (12) we have that

$$
\begin{aligned}
\left(J_{0}\right)_{2 l 2 M}=2(l & +M-1) \mathcal{P}_{2(l+M-1)} \partial_{x}+(2 M-1) \mathcal{P}_{2(l+M-1), x} \\
& \quad-\sum_{k=1}^{2 l-1} u_{2 l-k}\left[(k+2 M-2) \mathcal{P}_{k+2 M-2} \partial_{x}+(2 M-1) \mathcal{P}_{k+2 M-2, x}\right]
\end{aligned}
$$

Then, we have that $\left(J_{0}\right)_{22 M}$ contains a term $u_{2 M} \partial_{x}$ so that

$$
d_{2 M} \leqslant d_{2}+1
$$

Since according to (31) $(M \geqslant 3) d_{2}=0$, we have that

$$
\begin{equation*}
d_{2 M} \leqslant 1 \tag{32}
\end{equation*}
$$

On the other hand, we also see that $\left(J_{0}\right)_{2 l 2 M}$ contains a term $u_{l+M-1}^{2} \partial_{x}$. Hence, condition (14) with $n=2 l$ implies

$$
\begin{equation*}
2 d_{l+M-1} \leqslant d_{2 l}+1, \quad \text { for each } \quad l<M \tag{33}
\end{equation*}
$$

Now from (33) we deduce the following.

- By setting $l=1$ in (33), we get $2 d_{M} \leqslant d_{2}+1$, but $d_{2}=0$ so that $d_{M}=0$. Thus,

$$
M \geqslant 3 \Rightarrow d_{j}=0, \quad j=1,2, \ldots, M
$$

- Suppose that $M \geqslant 4$, and put $l=2$ into (33), then we have that $2 d_{M+1} \leqslant d_{4}+1$. But under our hypothesis $d_{4}=0$, so that

$$
M \geqslant 4 \Rightarrow d_{j}=0, \quad j=1,2, \ldots, M+1
$$

- Suppose that $M \geqslant 5$, and put $l=3$ into (33), then $2 d_{M+2} \leqslant d_{6}+1$. Again, under our actual hypothesis $d_{6}=0$, we have that

$$
M \geqslant 5 \Rightarrow d_{j}=0, \quad j=1,2, \ldots, M+2
$$

Let us now use induction to prove

$$
\begin{equation*}
M \geqslant k+3 \Rightarrow d_{j}=0, \quad j=1,2, \ldots, M+k \tag{34}
\end{equation*}
$$

We have already proved (34) for $k=1,2$. Assume that it holds for $k \leqslant k_{0}-1$ and let us check it for $k=k_{0}$.

Take $M \geqslant k_{0}+3$ and put $l=k_{0}+1$ in (33), then we have that

$$
2 d_{M+k_{0}} \leqslant d_{2 k_{0}+2}+1
$$

As $2 k_{0}+2 \leqslant M+k_{0}-1$ it follows that $d_{2 k_{0}+2}=0$, so that $d_{M+k_{0}}=0$ which proves (34).
Finally, for a given M, take $k=M-3$, then

$$
d_{j}=0, \quad j=1,2, \ldots, 2 M-3
$$

Hence, by taking (31) and (32) into account, we have proved that (14) implies

$$
d_{j}=0, \quad j=1,2, \ldots, 2 M-3, \quad d_{2 M-2}, d_{2 M-1}, d_{2 M} \leqslant 1
$$

We consider now the case $N=2 M+1$ with $M \in \mathbb{N}(M \geqslant 2)$. From (12)

$$
\left(J_{0}\right)_{12 M+1}=2 M \mathcal{P}_{2 M} \partial_{x}+2 M \mathcal{P}_{2 M, x}
$$

Consequently $\left(J_{0}\right)_{12 M+1}$ contains terms in
$u_{1}^{2 M} \partial_{x}, \quad u_{j}^{2} u_{1}^{2 M-2 j} \partial_{x}, \quad j=2, \ldots, M, \quad u_{2 M} \partial_{x}, \quad u_{2 M-1} u_{1} \partial_{x}$,
and condition (14) with $n=1$ implies that

$$
\begin{array}{ll}
2 M d_{1} \leqslant d_{1}+1, & 2 d_{j}+(2 M-2 j) d_{1} \leqslant d_{1}+1, \quad j=2, \ldots, M \\
d_{2 M} \leqslant d_{1}+1, & d_{2 M-1}+d_{1} \leqslant d_{1}+1
\end{array}
$$

or equivalently

$$
\begin{equation*}
d_{j}=0, \quad j=1,2, \ldots, M, \quad d_{2 M-1}, d_{2 M} \leqslant 1 \tag{35}
\end{equation*}
$$

On the other hand, by setting $i=2 l+1, j=2 M+1(l<M)$ in (12) we have that

$$
\begin{aligned}
\left(J_{0}\right)_{2 l+12 M+1}= & 2(l+M) \mathcal{P}_{2(l+M)} \partial_{x}+2 M \mathcal{P}_{2(l+M), x} \\
& -\sum_{k=1}^{2 l} u_{2 l+1-k}\left[(k+2 M-1) \mathcal{P}_{k+2 M-1} \partial_{x}+2 M \mathcal{P}_{k+2 M-1, x}\right] .
\end{aligned}
$$

Thus, $\left(J_{0}\right)_{2 l+12 M+1}$ contains the term $u_{M+l}^{2} \partial_{x}$, so that condition (14) with $n=2 l+1$ implies

$$
\begin{equation*}
2 d_{M+l} \leqslant d_{2 l+1}+1 \tag{36}
\end{equation*}
$$

By putting $l=1,2,3$ in (36) it follows:

- For $l=1$ we have that $2 d_{M+1} \leqslant d_{3}+1$. Thus,

$$
M \geqslant 3 \Rightarrow d_{j}=0, \quad j=1,2, \ldots, M+1
$$

- For $l=2$ it follows that $2 d_{M+2} \leqslant d_{5}+1$. Consequently

$$
M \geqslant 4 \Rightarrow d_{j}=0, \quad j=1,2, \ldots, M+2
$$

- For $l=3$ inequality (36) reads $2 d_{M+3} \leqslant d_{7}+1$ so that

$$
M \geqslant 5 \Rightarrow d_{j}=0, \quad j=1,2, \ldots, M+3
$$

Let us now use induction to show that

$$
\begin{equation*}
M \geqslant k+2 \Rightarrow d_{j}=0, \quad j=1,2, \ldots, M+k \tag{37}
\end{equation*}
$$

We have proved (37) for $k=1,2,3$. Suppose that it holds for $k \leqslant k_{0}-1$ and let us check it for $k=k_{0}$. Take $M \geqslant k_{0}+2$ and $l=k_{0}$ in (36), we find

$$
2 d_{M+k_{0}} \leqslant d_{2 k_{0}+1}+1
$$

But $2 k_{0}+1 \leqslant M+k_{0}-1$, then $d_{2 k_{0}+1}=0, d_{M+k_{0}}=0$ and (37) follows. Thus, for a given M, if we take $k=M-2$ we have that

$$
\begin{equation*}
d_{j}=0, \quad j=1,2, \ldots, 2 M-2 . \tag{38}
\end{equation*}
$$

Finally, from the expression

$$
\left(J_{0}\right)_{22 M+1}=(2 M+1) \mathcal{P}_{2 M+1} \partial_{x}+2 M \mathcal{P}_{2 M+1, x}-u_{1}\left[2 M \mathcal{P}_{2 M} \partial_{x}+2 M \mathcal{P}_{2 M, x}\right],
$$

we have that (14) implies $d_{2 M+1} \leqslant d_{2}+1$ and consequently $d_{2 M+1} \leqslant 1$. This fact, together with (35) and (38) lead us to

$$
d_{j}=0, \quad j=1,2, \ldots, 2 M-2, \quad d_{2 M-1}, d_{2 M}, d_{2 M+1} \leqslant 1
$$

From propositions 2 and 3 it follows that
Theorem. For each $N \in \mathbb{N}(N \geqslant 5)$ the degrees $\left(d_{1}, \ldots, d_{N}\right)$ satisfy the compatibility condition (14) if and only if

$$
\begin{equation*}
d_{i}=0, \quad i=1,2, \ldots, N-3, \quad d_{N-2}, d_{N-1}, d_{N} \leqslant 1 \tag{39}
\end{equation*}
$$

4. Hierarchies of consistent deformations

Our next task is to classify all the compatible cases in terms of the corresponding Newton exponent and the element $\sigma_{0}(17)$ of the Galois group of the curve.

We start by considering the case $N \geqslant 5$. In order to find l_{0} and σ_{0} for each one of the seven nontrivial choices (39), we study the asymptotic behaviour of the N branches $p_{i}, i=1,2, \ldots, N$ as $k \rightarrow \infty$. By writing the potentials as

$$
u_{n}=\sum_{j=0}^{d_{n}} u_{n j} k^{j}
$$

we have

- $(0, \ldots, 0,0,0,1)$. In this case (1) can be written as

$$
k=\frac{1}{u_{N 1}}\left(p^{N}-\sum_{l=1}^{N} u_{l 0} p^{N-l}\right),
$$

so that

$$
p_{j}^{N} \sim u_{N 1} k \quad \text { as } \quad k \rightarrow \infty, \quad j=1,2, \ldots, N
$$

Consequently, $p_{j} \in \mathbb{C}\left(\left(k^{\frac{1}{N}}\right)\right), j=1,2, \ldots, N$ and

$$
l_{0}=N, \quad \sigma_{0}=\left(\begin{array}{lllll}
p_{1} & p_{2} & \cdots & p_{N-1} & p_{N} \\
p_{2} & p_{3} & \cdots & p_{N} & p_{1}
\end{array}\right)
$$

- $(0, \ldots, 0,0,1,0)$. Now, (1) takes the form

$$
k=\frac{1}{u_{N-11}}\left(p^{N-1}-\sum_{l=1}^{N} u_{l 0} p^{N-l-1}-\frac{u_{N 0}}{p}\right) .
$$

Thus, the roots satisfy

$$
\begin{array}{ll}
p_{j}^{N-1} \sim u_{N-11} k & \text { as } \quad k \rightarrow \infty, \quad j=1,2, \ldots, N-1 \\
p_{N} \sim-\frac{u_{N 0}}{u_{N-11}} \frac{1}{k} & \text { as } \quad k \rightarrow \infty
\end{array}
$$

and we find

$$
l_{0}=N-1, \quad \sigma_{0}=\left(\begin{array}{lllll}
p_{1} & p_{2} & \cdots & p_{N-1} & p_{N} \\
p_{2} & p_{3} & \cdots & p_{1} & p_{N}
\end{array}\right) .
$$

- $(0, \ldots, 0,0,1,1)$. From (1) we can write

$$
k=\sum_{j=0}^{N-1} c_{j} p^{j}+\frac{c_{-1}}{u_{N-11} p+u_{N 1}}
$$

for certain coefficients $c_{j}, j=-1,0,1, \ldots, N-1$. Hence

$$
\begin{array}{ll}
p_{j}^{N-1} \sim \frac{1}{c_{N-1}} k & \text { as } \quad k \rightarrow \infty, \quad j=1,2, \ldots, N-1 \\
p_{N} \sim-\frac{u_{N 1}}{u_{N-11}}+\frac{c_{-1}}{u_{N-11}} \frac{1}{k} & \text { as } \quad k \rightarrow \infty
\end{array}
$$

so that

$$
l_{0}=N-1, \quad \sigma_{0}=\left(\begin{array}{lllll}
p_{1} & p_{2} & \cdots & p_{N-1} & p_{N} \\
p_{2} & p_{3} & \cdots & p_{1} & p_{N}
\end{array}\right) .
$$

- $(0, \ldots, 0,1,0,0)$. Equation (1) of the curve implies

$$
k=\frac{1}{u_{N-21}}\left(p^{N-2}-\sum_{l=1}^{N-2} u_{l 0} p^{N-l-2}+\frac{u_{N-10}}{p}+\frac{u_{N 0}}{p^{2}}\right) .
$$

Then,

$$
\begin{array}{lll}
p_{j}^{N-2} \sim u_{N-21} k & \text { as } \quad k \rightarrow \infty, & j=1,2, \ldots, N-2, \\
p_{j}^{2} \sim \frac{u_{N 0}}{u_{N-21}} \frac{1}{k} & \text { as } \quad k \rightarrow \infty, & j=N-1, N .
\end{array}
$$

Thus, the corresponding Galois group element is given by

$$
\sigma_{0}=\left(\begin{array}{llllll}
p_{1} & p_{2} & \cdots & p_{N-2} & p_{N-1} & p_{N} \\
p_{2} & p_{3} & \cdots & p_{1} & p_{N} & p_{N-1}
\end{array}\right)
$$

and the Newton exponent is

$$
l_{0}= \begin{cases}N-2 & \text { if } N \text { is even } \\ 2(N-2) & \text { if } N \text { is odd }\end{cases}
$$

- $(0, \ldots, 0,1,1,0)$. From (1) we have

$$
k=\sum_{j=0}^{N-2} c_{j} p^{j}+\frac{d_{1}}{p-b_{1}}+\frac{d_{2}}{p},
$$

for certain coefficients $c_{j}, j=0,1, \ldots, N-2, b_{1}$ and $d_{k}, k=1,2$. The branches satisfy

$$
\begin{array}{ll}
p_{j}^{N-2} \sim \frac{1}{c_{N-2}} k & \text { as } \quad k \rightarrow \infty, \quad j=1,2, \ldots, N-2, \\
p_{N-1} \sim b_{1}+\frac{d_{1}}{k} & \text { as } \quad k \rightarrow \infty, \\
p_{N} \sim \frac{d_{2}}{k} & \text { as } \quad k \rightarrow \infty,
\end{array}
$$

so that

$$
l_{0}=N-2, \quad \sigma_{0}=\left(\begin{array}{llllll}
p_{1} & p_{2} & \cdots & p_{N-2} & p_{N-1} & p_{N} \\
p_{2} & p_{3} & \cdots & p_{1} & p_{N-1} & p_{N}
\end{array}\right) .
$$

- $(0, \ldots, 0,1,0,1)$ and $(0, \ldots, 0,1,1,1)$. In these cases (1) implies

$$
k=\sum_{j=0}^{N-2} c_{j} p^{j}+\frac{d_{1}}{p-b_{1}}+\frac{d_{2}}{p-b_{2}},
$$

for certain coefficients $c_{j}, b_{k}, d_{k}, j=0,1, \ldots, N-2 ; k=1,2$. Therefore

$$
\begin{array}{ll}
p_{j}^{N-2} \sim \frac{1}{c_{N-2}} k & \text { as } \quad k \rightarrow \infty, \quad j=1,2, \ldots, N-2, \\
p_{N-1} \sim b_{1}+\frac{d_{1}}{k} & \text { as } \quad k \rightarrow \infty, \\
p_{N} \sim b_{2}+\frac{d_{2}}{k} & \text { as } \quad k \rightarrow \infty,
\end{array}
$$

so that

$$
l_{0}=N-2, \quad \sigma_{0}=\left(\begin{array}{llllll}
p_{1} & p_{2} & \cdots & p_{N-2} & p_{N-1} & p_{N} \\
p_{2} & p_{3} & \cdots & p_{1} & p_{N-1} & p_{N}
\end{array}\right) .
$$

Table 2. Classification of (39) according to σ_{0} and l_{0}.

σ_{0}		
$l l l l$		
$\left(\begin{array}{lllll}p_{1} & p_{2} & \cdots & p_{N-1} & p_{N} \\ p_{2} & p_{3} & \cdots & p_{N} & p_{1}\end{array}\right)$	N	$\left(d_{1}, \ldots, d_{N}\right)$
$\left(\begin{array}{lllll}p_{1} & p_{2} & \cdots & p_{N-1} & p_{N} \\ p_{2} & p_{3} & \cdots & p_{1} & p_{N}\end{array}\right)$	$N-1$	$(0, \ldots, 0,0,0,1)$
$\left(\begin{array}{lllll}p_{1} & \cdots & p_{N-2} & p_{N-1} & p_{N} \\ p_{2} & \cdots & p_{1} & p_{N-1} & p_{N}\end{array}\right)$	$N-2$	$(0, \ldots, 0,0,1,0)$
$(0, \ldots, 0,0,1,1)$		
$(0, \ldots, 0,1,1,0)$		
$\left(\begin{array}{lllll}p_{1} & \cdots & p_{N-2} & p_{N-1} & p_{N} \\ p_{2} & \cdots & p_{1} & p_{N} & p_{N-1}\end{array}\right)$	$N-2$ if N even $2(N-2)$ if N odd	$(0, \ldots, 0,1,1,1)$

These results are summarized in table 2.
From the general theorem proved in the previous section and the explicit expressions given above it is obvious that for $N \geqslant 5$ the consistency conditions (39) are satisfied by rational curves only.

We end this section by completing the previous table for $N=4$. Only the special set of degrees $(0,1,1,2)$ remains to be analysed. The corresponding branches can be expanded as

$$
p_{i}=a_{i 1} k^{\frac{1}{2}}+a_{i 0}+\frac{a_{i-1}}{k^{\frac{1}{2}}}+\cdots, \quad i=1,2,3,4
$$

where

$$
\begin{aligned}
& a_{i 0}=\frac{a_{i 1}{ }^{2} u_{10}+u_{31}}{4 a_{i 1}^{2}-2 u_{21}}, \\
& a_{i-1}=\frac{1}{8 a_{i 1}\left(2 a_{i 1}^{2}-u_{21}\right)^{3}}\left[a_{i 1}^{6}\left(6 u_{10}^{2}+16 u_{20}\right)\right. \\
& \quad+a_{i 1}^{4}\left(-5 u_{10}^{2} u_{21}+4 u_{10} u_{31}+16\left(-u_{20} u_{21}+u_{41}\right)\right) \\
& -2 a_{i 1}^{2}\left(-2 u_{20} u_{21}^{2}+3 u_{10} u_{21} u_{31}+u_{31}^{2}+8 u_{21} u_{41}\right) \\
& \left.\quad+u_{21}\left(-u_{31}^{2}+4 u_{21} u_{41}\right)\right], \\
& \vdots \quad \vdots
\end{aligned}
$$

and $a_{i 1}, i=1,2,3,4$ are the solutions of the equation

$$
a_{1}^{4}-u_{21} a_{1}^{2}-u_{42}=0
$$

By labelling its solutions so that $a_{21}=-a_{11}, a_{41}=-a_{31}$, we obtain

$$
p_{2}(z)=p_{1}(-z), \quad p_{4}(z)=p_{3}(-z), \quad k=z^{2}
$$

Thus it follows that

$$
l_{0}=2, \quad \sigma_{0}=\left(\begin{array}{cccc}
p_{1} & p_{2} & p_{3} & p_{4} \\
p_{2} & p_{1} & p_{4} & p_{3}
\end{array}\right)
$$

The results for the case $N=4$ are summarized in table 3 .
We note that except for the case $(0,1,1,2)$ the curves satisfying the consistency condition for $N=4$ are rational ones.

Let us now turn our attention to the problem of obtaining the hierarchy of integrable deformations (11). It is required to determine the function R of the form (16) satisfying the invariance condition (18). In view of (18) we discuss the different cases according to the corresponding element σ_{0} of the Galois group of the curve.

Table 3. Classification of (4) according to σ_{0} and l_{0}.

σ_{0}	l_{0}	$\left(d_{1}, d_{2}, d_{3}, d_{4}\right)$
$\left(\begin{array}{llll}p_{1} & p_{2} & p_{3} & p_{4} \\ p_{2} & p_{3} & p_{4} & p_{1}\end{array}\right)$	4	$(0,0,0,1)$
$\left(\begin{array}{llll}p_{1} & p_{2} & p_{3} & p_{4} \\ p_{2} & p_{3} & p_{1} & p_{4}\end{array}\right)$	3	$(0,0,1,0)$
$(0,0,1,1)$		
$\left(\begin{array}{llll}p_{1} & p_{2} & p_{3} & p_{4} \\ p_{2} & p_{1} & p_{3} & p_{4}\end{array}\right)$	2	$(0,1,1,0)$ $(0,1,1,1)$ $(0,1,0,1)$
$\left(\begin{array}{llll}p_{1} & p_{2} & p_{3} & p_{4} \\ p_{2} & p_{1} & p_{4} & p_{3}\end{array}\right)$	2	$(0,1,0,0)$ $(0,1,1,2)$

- $\sigma_{0}=\left(\begin{array}{lllll}p_{1} & p_{2} & \cdots & p_{N-1} & p_{N} \\ p_{2} & p_{3} & \cdots & p_{N} & p_{1}\end{array}\right)$.

From tables 1,2 and 3 we have that $l_{0}=N,\left(\epsilon_{0}=\epsilon=\mathrm{e}^{\frac{2 \pi t}{N}}\right)$. For $N \geqslant 4$ the only choice of degrees corresponding to σ_{0} is $(0, \ldots, 0,0,0,1)$. We look for functions $R_{k}=\sum_{j=1}^{N} \alpha_{j} p_{j}$ such that $\sigma_{0}\left(R_{k}\right)=\epsilon_{0}^{N-k} R_{k}, k=0,1, \ldots, N-1$. It is easy to check that

$$
\sigma_{0}\left(R_{k}\right)=\alpha_{N} p_{1}+\sum_{j=2}^{N} \alpha_{j-1} p_{j}
$$

so that the condition $\sigma_{0}\left(R_{k}\right)=\epsilon_{0}^{N-k} R_{k}$ implies that

$$
\begin{aligned}
& \alpha_{j-1}=\epsilon_{0}^{N-k} \alpha_{j}, \quad j=2, \ldots N-1, N ; \\
& \alpha_{N}=\epsilon_{0}^{N-k} \alpha_{1} .
\end{aligned}
$$

This system admits the nontrival solutions

$$
\alpha_{j}=\epsilon_{0}^{(N-k)(N-j)} \alpha_{N}=\epsilon_{0}^{j k} \alpha_{N} .
$$

Thus the functions R of the form (16) which satisfy (18) can be written as

$$
\begin{equation*}
R=\sum_{k=0}^{N-1} z^{k} f_{k}\left(z^{N}\right) \sum_{j=1}^{N} \epsilon_{0}^{j k} p_{j} \tag{40}
\end{equation*}
$$

with $f_{k} \in \mathbb{C}\left(\left(z^{N}\right)\right), k=0,1, \ldots, N-1$. Taking into account that $\epsilon_{0}=\epsilon$ and recalling (19), we see that the functions R can also be written in terms of the Lagrange resolvents as

$$
R=f_{0}\left(z^{N}\right) \mathcal{L}_{N}+\sum_{k=1}^{N-1} z^{k} f_{k}\left(z^{N}\right) \mathcal{L}_{k}
$$

which coincides with the first equation for $N=3$ in (20).

$$
\sigma_{0}=\left(\begin{array}{lllll}
p_{1} & \cdots & p_{N-2} & p_{N-1} & p_{N} \\
p_{2} & \cdots & p_{N-1} & p_{1} & p_{N}
\end{array}\right)
$$

The corresponding Newton exponent is $l_{0}=N-1\left(\epsilon_{0}=\mathrm{e}^{\frac{2 \pi t}{N-1}}\right)$ and for $N \geqslant 4$ the degrees of the potentials are $(0, \ldots, 0,0,1,0)$ and $(0, \ldots, 0,0,1,1)$. In this case we have that $\sigma_{0}\left(p_{N}\right)=p_{N}$, or equivalently $p_{N} \in \mathbb{C}((k))$. Moreover, we need $N-1$ additional
functions R verifying the invariance condition (18). Proceeding as in the previous case we look for functions of the form
$R_{k}=\sum_{j=1}^{N-1} \alpha_{j} p_{j}, \quad$ such that $\quad \sigma_{0}\left(R_{k}\right)=\epsilon_{0}^{N-1-k} R_{k}, \quad k=0,1, \ldots, N-2$.
Since the action of σ_{0} on the function R_{k} is given by

$$
\sigma_{0}\left(R_{k}\right)=\alpha_{N} p_{1}+\sum_{j=2}^{N-1} \alpha_{j-1} p_{j}
$$

the condition $\sigma_{0}\left(R_{k}\right)=\epsilon_{0}^{N-1-k} R_{k}$ leads to

$$
\begin{aligned}
& \alpha_{j-1}=\epsilon_{0}^{N-1-k} \alpha_{j}, \quad j=N-1, N-2 \ldots, 2 \\
& \alpha_{N-1}=\epsilon_{0}^{N-1-k} \alpha_{1},
\end{aligned}
$$

so that $\alpha_{j}=\epsilon_{0}^{(N-1-k)(N-1-j)} \alpha_{N}=\epsilon_{0}^{j k} \alpha_{N}$, and

$$
\begin{equation*}
R=\sum_{k=0}^{N-2} z^{k} f_{k}\left(z^{N-1}\right) \sum_{j=1}^{N-1} \epsilon_{0}^{j k} p_{j}+f_{N-1}\left(z^{N-1}\right) p_{N} \tag{41}
\end{equation*}
$$

Example. For $N=4$

$$
\begin{gathered}
R=f_{0}\left(z^{3}\right)\left(p_{1}+p_{2}+p_{3}\right)+z f_{1}\left(z^{3}\right)\left(\mathrm{e}^{\frac{2 \pi i}{3}} p_{1}+\mathrm{e}^{\frac{4 \pi i}{3}} p_{2}+p_{3}\right) \\
\\
+z^{2} f_{2}\left(z^{3}\right)\left(\mathrm{e}^{\frac{4 \pi i}{3}} p_{1}+\mathrm{e}^{\frac{2 \pi i}{3}} p_{2}+p_{3}\right)+f_{3}\left(z^{3}\right) p_{4} \\
\text { - } \sigma_{0}=\left(\begin{array}{lllll}
p_{1} & \cdots & p_{N-2} & p_{N-1} & p_{N} \\
p_{2} & \cdots & p_{1} & p_{N-1} & p_{N}
\end{array}\right) .
\end{gathered}
$$

In this case $\sigma_{0}, l_{0}=N-2,\left(\epsilon_{0}=\mathrm{e}^{\frac{2 \pi t}{N-2}}\right)$. For $N \geqslant 4$ it corresponds to the sets of degrees $(0, \ldots, 0,1,0,1),(0, \ldots, 0,1,1,0)$ and $(0, \ldots, 0,1,1,1)$. Note that $p_{N-1}, p_{N} \in \mathbb{C}((k))$. Let us look for functions

$$
R_{k}=\sum_{j=1}^{N-2} \alpha_{j} p_{j}, \quad \text { verifying } \quad \sigma_{0}\left(R_{k}\right)=\epsilon_{0}^{N-2-k} R_{k}, k=0,1, \ldots, N-3
$$

We find that

$$
\begin{aligned}
& \alpha_{j-1}=\epsilon_{0}^{N-2-k} \alpha_{j}, \quad j=N-2, N-3, \ldots, 2 \\
& \alpha_{N-2}=\epsilon_{0}^{N-2-k} \alpha_{1},
\end{aligned}
$$

then $\alpha_{j}=\epsilon_{0}^{(N-2-k)(N-2-j)} \alpha_{N-2}=\epsilon_{0}^{j k} \alpha_{N-2}$, and

$$
\begin{equation*}
R=\sum_{k=0}^{N-3} z^{k} f_{k}\left(z^{N-2}\right) \sum_{j=1}^{N-2} \epsilon_{0}^{j k} p_{j}+f_{N-2}\left(z^{N-2}\right) p_{N-1}+f_{N-1}\left(z^{N-2}\right) p_{N} \tag{42}
\end{equation*}
$$

- $\sigma_{0}=\left(\begin{array}{lllll}p_{1} & \cdots & p_{N-2} & p_{N-1} & p_{N} \\ p_{2} & \cdots & p_{1} & p_{N} & p_{N-1}\end{array}\right)$.

This element corresponds to the sets of degrees $(0, \ldots, 0,1,0,0)$ and, in the particular case $N=4$, to the special choice $(0,1,1,2)$ too. From the discussion in section 3 it follows that the Newton exponent of σ_{0} depends on whether N is even or odd.

- N even: $l_{0}=N-2\left(\epsilon_{0}=\mathrm{e}^{\frac{2 \pi t 1}{N-2}}\right)$. It is easy to see that $p_{N-1}+p_{N} \in \mathbb{C}((k))$ and $\sigma_{0}\left(-p_{N-1}+p_{N}\right)=-\left(-p_{N-1}+p_{N}\right)$. On the other hand, since σ_{0} acts on $p_{j}, j=1,2, \ldots, N-2$ and ϵ_{0} coincides with the previous one, we have again that

$$
R_{k}=\sum_{j=1}^{N-2} \epsilon_{0}^{j k} p_{j}, \quad k=0,1, \ldots, N-3
$$

satisfy $\sigma_{0}\left(R_{k}\right)=\epsilon_{0}^{N-2-k} R_{k}$. Thus R is now given by

$$
\begin{gather*}
R=\sum_{k=0}^{N-3} z^{k} f_{k}\left(z^{N-2}\right) \sum_{j=1}^{N-2} \epsilon_{0}^{j k} p_{j}+z^{\frac{N-2}{2}} f_{N-2}\left(z^{N-2}\right)\left(p_{N-1}-p_{N-1}\right) \\
\quad+f_{N-1}\left(z^{N-2}\right)\left(p_{N-1}+p_{N}\right) \tag{43}
\end{gather*}
$$

Example. For $N=4$
$R=f_{0}\left(z^{2}\right)\left(p_{1}+p_{2}\right)+z f_{1}\left(z^{2}\right)\left(-p_{1}+p_{2}\right)+z f_{2}\left(z^{2}\right)\left(-p_{3}+p_{4}\right)+f_{3}\left(z^{2}\right)\left(p_{3}+p_{4}\right)$.
$\circ N$ odd: $l_{0}=2(N-2)\left(\epsilon_{0}=\mathrm{e}^{\frac{\pi t}{N-2}}\right)$. Again in this case $p_{N-1}+p_{N} \in \mathbb{C}((k))$ and $\sigma_{0}\left(-p_{N-1}+p_{N}\right)=-\left(-p_{N-1}+p_{N}\right)$. Moreover, if we look for functions $R_{k}=\sum_{j=1}^{N-2} \alpha_{j} p_{j}$ such that

$$
\sigma_{0}\left(R_{k}\right)=\epsilon_{0}^{2(N-2-k)} R_{k}, \quad k=0, \ldots, N-3
$$

by proceeding as in the previous cases, we find that $\alpha_{j}=\epsilon_{0}^{2(N-2-k)(N-2-j)} \alpha_{N-2}=\epsilon_{0}^{2 j k} \alpha_{N-2}$, so that

$$
\begin{gather*}
R=\sum_{k=0}^{N-3} z^{2 k} f_{k}\left(z^{2(N-2)}\right) \sum_{j=1}^{N-2} \epsilon_{0}^{2 j k} p_{j}+z^{N-2} f_{N-2}\left(z^{2(N-2)}\right)\left(p_{N}-p_{N-1}\right) \\
+f_{N-1}\left(z^{2(N-2)}\right)\left(p_{N-1}+p_{N}\right) \tag{44}
\end{gather*}
$$

Example. For $N=5$

$$
\begin{aligned}
& R=f_{0}\left(z^{6}\right)\left(p_{1}+p_{2}+p_{3}\right)+z^{2} f_{1}\left(z^{6}\right)\left(\mathrm{e}^{\frac{2 \pi i}{3}} p_{1}+\mathrm{e}^{\frac{4 \pi i}{3}} p_{2}+p_{3}\right)+z^{4} f_{2}\left(z^{6}\right)\left(\mathrm{e}^{\frac{4 \pi i}{3}} p_{1}+\mathrm{e}^{\frac{2 \pi i}{3}} p_{2}+p_{3}\right) \\
& \quad+z^{3} f_{3}\left(z^{6}\right)\left(-p_{4}+p_{5}\right)+f_{4}\left(z^{6}\right)\left(p_{4}+p_{5}\right)
\end{aligned}
$$

Thus, the integrable deformations (11), (16) are determined by the expressions of R in (40), (41), (42), (43) or (44) depending on σ_{0} and the Newton exponent l_{0}.

Acknowledgment

The authors wish to thank Prof Y Kodama for his interest and help during the elaboration of this work.

References

[1] Novikov S P, Manakov S V, Pitaevski L P and Zakharov V E 1984 Theory of Solitons (New York: Plenum)
[2] Belokolos E D, Bobenko A I, Enolski V Z, Its A R and Matveev V B 1994 Algebro-Geometric Approach to Nonlinear Integrable Equations (Berlin: Springer)
[3] Dubrovin B and Novikov S 1989 Russ. Math. Surv. 4435
[4] Flaschka H, Forest M G and Mclauglin D W 1980 Commun. Pure Appl. Math. 33739
[5] Dubrovin B A 1992 Commun. Math. Phys. 145415
[6] Krichever I M 1988 Funct. Anal. Appl. 22206
[7] Krichever I M 1994 Commun. Pure. Appl. Math. 47437
[8] Kodama Y and Konopelchenko B G 2002 J. Phys. A: Math. Gen. 35 L489-500
[9] Konopelchenko B G and Martínez Alonso L 2004 J. Phys. A: Math. Gen. 377859
[10] Kodama Y, Konopelchenko B G and Martínez Alonso L 2005 Theor. Math. Phys. 144961
[11] Kodama Y, Konopelchenko B G, Martínez Alonso L and Medina E 2005 J. Math. Phys. 46113502
[12] van der Waerden B L 1991 Algebra vol 1 (Berlin: Springer)
[13] Redei L 1967 Introduction to Algebra vol 1 (Oxford: Pergamon)
[14] Walker R Y 1978 Algebraic Curves (Berlin: Springer)
[15] Abhyankar S S 1990 Algebraic geometry for scientists and engineers Mathematical Surveys and Monograps vol 35 (Providence, RI: American Mathematical Society)

[^0]: * Partially supported by MEC project FIS2005-00319 and by the grant COFIN 2004 'Sintesi'.

